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Thursday, November 17 

 

Opening Remarks  

Lynda Chin, M.D.; University of Texas, M.D. Anderson Cancer Center 

 

Dr. Chin began by thanking attendees and noting that the goal of this symposium is to showcase 

some of the outstanding science enabled by TCGA that is being conducted within the consortium 

and by the larger cancer community. She noted TCGA has built momentum, and its impact is 

being felt in all areas of basic, translational, and clinical research. This symposium is therefore a 

venue to share exciting new data and their myriad applications and to convene and build the 

community of TCGA data users, with the ultimate goals of increasing the uses and accelerating 

the translation of TCGA data into endpoints that can impact patient outcome. Dr. Chin also noted 

that this symposium will showcase young investigators in this new area of science, and she 

thanked members of the meeting committee for their help in screening and selecting talks from 

the submitted abstracts.   

 

Keynote Address: Cancer Genomics: Fulfilling the Promise   

Eric S. Lander, Ph.D.; Broad Institute 

 

Dr. Lander provided an overview of cancer genomics research for the past century, with a focus 

on where future efforts will lead. In 1914, Boveri proposed that chromosome defects cause 

cancer. In the ensuing decades, however, this hypothesis was largely replaced with the idea that 

viruses cause cancer. In 1971, Knudsen proposed the two-hit hypothesis that suggested that viral 

oncogenes were related to cellular genes. By 1980, the concept that most cancer defects arose 

from cellular genes had been established, and by 1986, most of the mechanisms causing these 

defects were known. In 1986, Dulbecco (Science 231:1055-1056) noted the importance of 

sequencing the human genome, and 15 years later, sequencing of the human genome allowed 

investigators to take systematic approaches to genome studies. Breakthroughs during the first 

decade of the 21
st
 century (e.g., microarrays, DNA resequencing, RNAi) enabled systematic 

sequencing of pathways and gene classes implicated in cancer (e.g., BRAF, PIK3CA, EGFR), 

systematic microarray studies, and integrative genomics. In 2005, the NCI’s National Cancer 

Advisory Board assembled a Working Group on Biomedical Technology that argued that cancer 

is a genetic, heterogeneous, and understandable disease; a systematic understanding of cancer 

would thus have major implications in numerous research and healthcare areas. Moreover, the 

Working Group argued that systematic understanding of caner genome is technologically 

feasible within the next decade at a modest cost in context.  

 

Although the Human Genome Project was proposed prior to the advent of PCR, the Project 

caused dramatic changes in the cost of sequencing. As such, a flexible, incremental, evolving 

plan (The Human Cancer Genome Project) was proposed to investigate genomic loss and 

amplification, point mutations in coding regions, and chromosomal rearrangements and 

epigenetic changes. The project set a goal of identifying all genomic alterations significantly 

associated with all major cancer types by creating a large collection of appropriate, clinically 

annotated samples and completely characterizing each sample. This proposal engendered 

pushback in terms of possibility and cost estimates. 
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In 2006, a pilot project, then called The Cancer Genome Atlas, was launched, and other 

established genomic organizations such as the Sanger Centre and the International Cancer 

Genome Consortium (ICGC) became involved. Since the initiation of TCGA, the cost of 

sequencing has decreased 1000-fold. More than 600 TCGA samples have been analyzed in 

publications, with more than 1000 whole cancer genomes and more than 9000 cancer whole 

exomes characterized to date. Dr. Lander noted that such large-scale genomic approaches 

provide insights into functional classes of genes implicated in cancer, including protein and lipid 

kinases, lineage survival genes, epigenetic regulators, metabolic enzymes, RNA splicing factors, 

and translocations. Surprise findings have included identifying Notch as an oncogene in T-ALL 

and a tumor suppressor in squamous skin cancers. Genes identified by TCGA as implicated in 

carcinogenesis include BRAF, PIK3CA, EGFR, FGFR2, and ALK. 

 

TCGA aims to create a comprehensive catalog of the cancer genome and to understand how 

molecular signaling pathways are involved in carcinogenesis. To accomplish these goals, it is 

essential to identify all driver genes in all cancer types and understand how these genes correlate 

with clinical phenotype. It is known that many genes are implicated in specific cancers, but only 

some are significantly mutated. Dr. Lander noted that current lists of “significant genes” are 

populated yet incomplete. For example, a TCGA analysis of 457 lung cancer specimens 

identified 843 significant genes, many of which (e.g., the 146 olfactory receptors identified) are 

not likely to be significant to the cancer process. As such, a significance score must be assigned 

based on a background model of a constant mutation rate across the genome. However, 

heterogeneity also creates false positives, making it appear that some genes are mutated at a 

higher than actual rate. This problem grows more acute as the sample size increases. However, 

cancer types show distinctive mutation rates and patterns. Mutation rates vary with gene 

expression; genes that are more highly expressed have lower mutation rates due to transcription-

coupled repair. Nonetheless, the regional rate of mutation varies across the genome, and human 

mutation rates are associated with DNA replication timing for germline and somatic mutations. 

Late replication explains most of the olfactory receptors and other genes of questionable cancer 

significance that appear in lists of “significantly mutated” genes. Correcting for variations in the 

mutation rate removes many of these genes, thus suggesting that learning the mutation rate is a 

critical concept. 

 

TCGA efforts have supported a wide range of genomic analyses that have led to numerous 

insights about specific cancers and the global disease. Whole genome analysis has revealed that 

10% of the genome is typically involved in focal amplifications and deletions in cancers. 

However, the search for amplifications is challenged by identifying the driver genes, and 

homozygosity is necessary for a deletion to be significant. Nearly one quarter of the genome of a 

given cancer is engaged in arm-level mutations, although the driver genes are not easily 

identifiable. Methylation analyses have identified subgroup phenotypes of glioma, yet there is no 

currently available way to identify the associated driver genes. Analysis of translocations has 

provided evidence of many simultaneously occurring events, yet translocation rates and patterns 

vary across cancer types. Challenges with regard to translocations include significance and 

completeness. Integrating events are also observed in many cancers, including ovarian and lung 

small-cell carcinoma, but large, complete datasets are required to understand these events. 

Current efforts focus on coding regions, thus potentially overlooking non-genic targets. Microbes 

have been correlated with many cancers, but proving causation remains a challenge. With regard 

to understanding germline mutations that explain heritability, large sample sizes are necessary to 
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determine if such mutations reflect common variants of a small effect or rare variants of a large 

(greater than or equal to five-fold) effect. 

 

Dr. Lander thus noted that understanding the cancer genome catalog will require integration 

across tumor types. Thousands of specimens may be required of some cancers to achieve the 

sufficient sensitivity. To date, TCGA has focused on large, surgically-treatable tumors and pre-

treatment tumors. To understand fully the interplay of genomic events in cancer, the initiative 

must expand its efforts to include assessing intra-tumor diversity and analyzing non-resectable 

cancers and metastases. Results must then be correlated with clinical information. To this end, 

Dr. Lander recommended creating a Global Cancer Alliance, a shared knowledge base to which 

cancer patients can choose to contribute their genomic and clinical data. 

 

Systematic knowledge bases are required to recognize functional pathways and mechanisms in 

which targets act and to understand cancer vulnerabilities and resistance mechanisms as 

functions of the cancer genome. Dr. Lander suggested creating a Cancer Therapeutic Roadmap 

that would enable systematic input of genes into pathways and processes to understand function 

and provide insight about targets for intervention. Other ongoing efforts, such as the 

Connectivity Map, a “Google for biologic function,” represents a compendium that is connected 

to the Gene Expression Omnibus, allowing researchers to study expression patterns that result 

from knocking out specific genes. He noted that the ability to study network effects provides 

additional data and increases study power, thereby enabling studies of gene function, repurposing 

of drugs, toxicity studies, interpretation of hits in a screen, and direct small-molecule screening. 

TCGA is also working with the Cancer Cell Line Encyclopedia, which aims to study complete 

genomes from 1000 cancer cell lines in which genes have been knocked out systematically. This 

tool will enable researchers to search for cancers with amplification in a particular gene or genes 

and assess the downstream effects, thereby facilitating development of resistance catalogs and 

definition of countermeasures. To meet the overall goal of understanding functional pathways in 

cancer, the entire cancer community must share open and usable data.  

 

Discussion: 

 

One attendee asked about minimizing redundancy across large-scale efforts. Dr. Lander replied 

that TCGA gains strength because it is coordinated but not centralized. He noted that scale is 

key, and projects should begin as pilots to determine their viability and to demonstrate a 

communal need. He noted that the entire community is collectively responsible for assembling a 

set of open, high-quality facts. Another attendee asked about systematic efforts to integrate non-

coding regions, to which Dr. Lander replied that no systematic efforts on the TCGA scale are 

currently underway. Many of these regions are small, suggesting that only a few great examples 

could prove the value of this approach. He noted that the Encyclopedia of DNA Elements 

(ENCODE) is currently investigating some non-coding regions, although ENCODE and TCGA 

do not currently integrate their data sets. Another participant asked about targeted therapy, given 

the heterogeneity of disease. Referencing the Project Achilles, Dr. Lander replied that therapies 

must be tested in combination or in parallel, even when each drug will likely fail individually. 

However, there is no infrastructure currently in place to develop and approve multiple agents 

simultaneously.  
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Session 1 

Chair: Peter W. Laird, Ph.D., M.S.; University of Southern California Epigenome Center 

 

Lead Talk—The Cancer Epigenome  

Peter W. Laird, Ph.D., M.S.; University of Southern California Epigenome Center 

 

Dr. Laird began by observing that the torrent of data generated by TCGA exceeds the analysis 

capacity of TCGA community. DNA methylation alterations in cancer represent one mark that 

survives processing to naked DNA. CpG dinucleotides are possible targets for methylation that 

are clustered in CpG islands that tend to be located near promoter regions. In cancer, CpG 

islands may acquire abnormal focal hypermethylation, and methylated CpG island promoters are 

transcriptionally silenced in cancer. Moreover, areas of low CpG density may lose DNA 

methylation in cancer. TCGA efforts have revealed epigenetic silencing of BRCA1 in serous 

ovarian cancer (TCGA Research Network. Nature 2011;474:609), indicating that germline and 

somatic mutations are distinct from methylation. Mutated cases appear associated with better 

survival than epigenetically silenced cases, although it is not clear how these methylated cases 

respond to PARP inhibitors. TCGA glioma analyses have identified a CpG island methylator 

phenotype (G-CIMP; Noushmehr, et.al. Cancer Cell 2010;17:510) that defines a distinct 

subgroup of glioma. Four subtypes of glioma (e.g., proneural, mesencyhmal, classical, and 

neural) have been identified based on expression clusters and methylation clusters. G-CIMP is a 

subset of proneural GBM with better survival. An almost perfect correlation is observed between 

mutation in IDH1 and the G-CIMP phenotype. IDH1 mutation may cause aberrant CpG island 

methylation that ultimately allows accumulation of CpG islands. This hypothesis, however, only 

explains a subset of cases and does not explain G-CIMP IDH1
wt

 cases. 

 

Cross-tumor comparison of methylation among 2275 TCGA specimens and 409 normal tissues 

reveals that gastrointestinal (GI) cancers cluster. Female-hormone driven malignancies also 

cluster. Whole genome bisulfite sequencing (WGBS) has been carried out on four TCGA cancers 

to date, with three lung and three breast tumors in process. WGBS of TCGA tissues indicates 

that most of the genome is heavily methylated, with methylation-prone regions throughout. 

Methylation-prone elements are enriched for stem cell polycomb markers, and transcriptional 

potential is associated with histone H3 methylation. Polycomb target genes in embryonic stem 

cells are master regulators of differentiation and development that are poised to be turned on 

during differentiation. Polycomb target DNA methylation begins in normal tissues and becomes 

exacerbated in cancer. Polycomb crosstalk leads to cumulative stochastic methylation with 

aging. As such, a transient repressive state becomes a permanently silent state, and the cell loses 

its ability to differentiate. These cells then become stuck as self-renewing cells that can become 

target cells with appropriate stimulus. This model would explain the DNA methylation behavior 

for approximately half of cancer-specifically methylated genes and is consistent with the 

observation of epigenetic field effects adjacent to tumors. The model also suggests that cancer 

may start as a differentiation defect consistent with the stem cell-like behavior of cancer cells 

and with evidence for tumor-initiating cells. The model further suggests that the first steps in 

oncogenesis may be epigenetic. Therapeutic cloning strategies that use human embryonic stem 

cells or induced pluripotent stem cells should incorporate screening for PRC2 DNA methylation 

abnormalities.  
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Methylation-prone CpG islands (Berman, et.al. Nat Genet 2012;44:40-46) are regions where 

methylation encroaches into CpG islands in cancer cells. Regions of focal hypermethylation and 

long-range hypomethylation coincide, and a subset of the cancer epigenome has partially lost 

methylation. These hypomethylated “oceans” correspond to lamin attachment domains in the 

nuclear periphery, indicating that the epigenome has a spatial organization. 

 

In summary, Dr. Laird noted that a CpG island methylator phenotype has been identified in 

glioblastoma that is likely related to IDH1 mutation. Polycomb repressor binding in embryonic 

stem cells predisposes DNA methylation to cancer; this polycomb repressor predisposition is 

seen across cancer types. Focal hypermethylation and long-range hypomethylation coincide in 

partially-methylated domains (PMDs), and epigenetically unstable PMDs are associated with 

nuclear lamina attachment and late-replicating regions. 

 

Predicting Patient Outcomes with Chained Biological Concept Classifiers  

K. James Durbin and Daniel Edward Carlin, M.S.; University of California, Santa Cruz 

 

Dr. Carlin began by noting that cell-specific programs observed in stem cells are aberrantly 

activated in many types of cancer cells. As such, his laboratory is working to develop a method 

to detect these programs. Classifier chaining uses stem cell expression to build a signature of 

“stemness” that can then be used to classify cancers. In this approach, cancer expression datasets 

are mapped to a standard set of genes and normalized by quantile. Once a robust stem cell 

classifier was identified, applied learning was used to mine expression data from breast, 

colorectal, glioblastoma, lung, and ovarian cancers from TCGA for stemness levels and their 

relationships to cancer subtypes. This approach can be used to learn on one type of cancer and 

then be applied to other types. For example, this approach was trained using 80% of BRCA 

breast cancer data to discern signatures for basal versus luminal subtypes and then applied to the 

remaining 20% of BRCA data and to all TCGA ovarian cancer data. Future efforts will focus on 

obtaining gene signatures from a binary classifier. Such signatures can recognize two-way 

distinctions. A cancer sample is run on each classifier individually, thereby defining a signature 

for each cell based on its performance in each classifier. Results from these experiments can 

reveal where the cell resides in the hierarchy of development as well as its tissue of origin. Each 

time that binary classifiers are evaluated, the one that performs best is retained. While this 

approach overfits to a specific dataset, a wealth of biologic data is captured. 

 

Lessons Learned from 24 Completely Sequenced Acute Myeloid Leukemia (AML) Genomes  

Timothy Ley, M.D.; Washington University in St. Louis 

 

Dr. Ley began by stating the little is known about the key initiating mutations for most patients 

with AML, excepting canonical translocations. However, AML tumor tissue can be conveniently 

and repeatedly accessed, and most samples are relatively free of contaminating normal cells. 

Furthermore, many AML genomes are diploid, and low-resolution genomic screening 

(cytogenetics) is an established paradigm for classifying disease and supporting treatment 

decisions. Favorable-risk cases can be treated lightly upfront, whereas adverse-risk cases require 

transplant. However, two-thirds of cases are intermediate risk, revealing a need for biomarkers 

that can further stratify disease. Moreover, each AML genome contains hundreds of mutations, 

and all of the mutations are present in all tumor cells. This finding suggests that all mutations 

could have arisen simultaneously or that clonal evolution has generated hundreds of relevant 
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mutations per genome. Given the improbability of these hypotheses, a more plausible model 

involves hematopoietic stem cells, which accumulate an average of 14 mutations per year until 

an AML-initiating mutation is acquired. Once the critical cell has been created, it undergoes 

clonal expansion, thus explaining why all AML mutations have the same read-count frequency 

when sampled deeply by NGS data. Sequencing the AML genome thus captures the relevant 

mutations plus all others that have accumulated in the cell. But how many mutations are required 

to cause AML? A comparison between the mutational burdens seen in M3 AML (initiated by 

PML-RARA) versus M1 AML with normal karyotype (NK) should indicate the same total 

number of mutations in both genomes, most of which will be random and irrelevant. However, 

M1 should also feature some novel mutations that represent tumor initiation, whereas mutations 

shared between M1 and M3 genomes will indicate disease progression. 

 

To determine the distribution of recurrent mutations, 24 AML tumor/normal genome pairs were 

sequenced. These efforts identified 10,597 validated somatic mutations, including 21 recurrently 

mutated genes (ten in M1 only; one in M3 only; and eleven common to both). All de novo AMLs 

have founding clones, and some have subclones. All four cohesion complex genes are mutated in 

AML.   

 

The TCGA AML200 project includes whole-genome sequencing of 50 cases of de novo AML 

tumor/normal pairs, 150 exomes (also tumor/normal pairs), 173 transcriptomes, and 192 

methylation arrays. Cases were chosen to represent all known subtypes of AML in terms of 

karyotype and morphology. Age is a predictor of the number of mutated genes in AML. 

RNASeq has been used to identify gene fusions from de novo assembly of AML transcriptomes. 

Deep digital sequencing shows how AML undergoes clonal evolution at relapse. Clonal behavior 

leading to relapse will be critical for therapy, as founding clones must be removed to cure the 

disease. Dr. Ley noted that these data provide a lower bound on the number of AML mutations 

necessary to cause the disease. Several genes likely to be important have been identified, 

although it is difficult to tell whether these will pan out until many hundreds of AML genomes 

are sequenced, and recurrence is assessed. One attendee asked if parallel FLT3-like mutations 

were observed in patients without FLT3 mutations, to which Dr. Ley replied that they were 

generally not found in AML genomes, although other cooperating mutations do clearly exist. 

 

LRpath Analysis Reveals Common Pathways Dysregulated via DNA Methylation across 

Cancer Types   

Maureen A. Sartor, Ph.D., M.S.; University of Michigan 

 

Dr. Sartor noted that the relative contribution of epigenetic mechanisms to carcinogenesis is 

poorly understood--do epigenetic mechanisms target genes and pathways similarly to somatic 

mutations? The Illumina HumanMethyaltion27 Bead Chip platform assesses the percentage 

methylation of more than 27,000 CpG sites across the genome, and several studies have been 

published testing for genes with aberrant methylation in their promoter regions. Interestingly, 

most of these publicly available datasets study cancer. As such, Dr. Sartor noted that the time is 

ripe for an integrative analysis using data from TCGA and NCBI’s Gene Expression Omnibus 

(GEO) to test whether certain pathways or gene groups are commonly dysregulated across 

cancer groups via DNA methylation during the cancer pathogenesis. This approach analyzed 

pathways using the interactive logistical regression-based LRPath platform 

(http://lrpath.ncibi.org; Sartor MA, et.al. Bioinformatics 2009;25:211-217). Advantages of 
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LRPath include strong performance for datasets with large and small sample sizes, the ability to 

test directional and non-directional tests, the ability to interpret random sets without the need for 

significance values to be “approximately normally distributed,” generation of identical 

significance values for repeated runs (e.g., no dependence on permutations), and a flat p-value 

distribution under the null.  

 

Dr. Sartor noted that LRPath can be used to test many different types of gene sets, including 

those identified from pathway analysis, literature, experimental results, and targeted approaches. 

LRPath also provides clustering options and filtering capability. The Illumina 27 Bead Chip 

assesses the percent methylation for more than 27,000 sites, spanning more than 14,000 genes. 

This platform was used to study pathways commonly altered as a result of DNA methylation in 

tumor versus normal tissues for ten cancer types, each of which featured at least 1000 sites with a 

greater than ten-fold change in methylation. Hypomethylated pathways identified included those 

related to immune response (e.g., chemokine and cytokine activity, responses to stimulus and 

inflammation, receptor binding activities, and peptidase activities) and epidermal development. 

Hypermethylated pathways included those associated with nerve development, embryonic 

development, homeobox signaling, sequence-specific DNA binding, and voltage-gated 

potassium channels. Some gene sets were selectively methylated in breast or prostate cancers. In 

summary, Dr. Sartor noted that pathways affected by differential methylation were surprisingly 

concordant across cancer types. DNA repair, one of the most commonly affected pathways in 

cancer development, is depleted in differentially methylated genes. For most tumor types, a 

change in CpG methylation within a pathway affected similar genes. An integrated analysis of 

biologic concepts dysregulated via methylation across ten cancer types identified concepts that 

were affected in multiple cancer types that support biologically important findings. A subset of 

known cancer pathways appears to be commonly dysregulated via DNA methylation across 

cancers. She noted that this approach has yet to be applied to investigate hypermethylation in 

cancer subtypes. One attendee asked how “normal” was defined at the epigenetic/proteomic 

level, to which Dr. Sartor replied that, while cancer-specific methylation probes tend to be 

consistent across a wide range of normal tissues, “normal” means that the cell of origin has a 

profile similar to that of the tumor under study. Another participant asked if gene sets in close 

proximity were affected by the same event of hypomethylation. Dr. Sartor replied that immune 

response genes are close together, so it is possible that proximal genes are affected similarly.   

 

Multi-Cancer Mutual Exclusivity Analysis of Genomic Alterations  

Giovanni Ciriello, Ph.D.; Memorial Sloan-Kettering Cancer Center 

 

Dr. Ciriello began by observing that recurrent genomic alterations target specific pathways and 

that functional alterations that target the same pathway frequently occur in a mutually exclusive 

manner. The Ciriello laboratory has developed the Mutual Exclusivity Modules (MEMo) tool 

(Ciriello G, et.al. Genome Res 2011;Oct 12:Epub ahead of print) to systematically identify 

mutually exclusive alterations that target oncogenic pathways across multiple cancer types. 

MEMo has been applied to five TCGA projects (glioblastoma, ovarian, colorectal, uterine, and 

breast cancers). Mutually exclusive patterns of alteration have been identified in several 

oncogenic pathways, including Rb signaling, p53 signaling, DNA repair, and PI(3)K/Akt. 

MEMo did not find PI(3)K/Akt modules in ovarian cancer, although multiple low-frequency 

events target the PI(3)K pathway. 463 samples of invasive breast cancer have also been 

examined. The heterogeneity of the disease suggests that basal and luminal subtypes may 
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actually represent distinct diseases. These analyses addressed whether pathways are differentially 

modified on the basis of these subtypes and whether the PI(3)K pathway is altered by other 

means in basal tumors. PTEN is down regulated in basal tumors independently of copy number 

status, and PTEN downregulation activates Akt phosphorylation. AKT3 is over-expressed in basal 

breast cancer; 30% of basal tumors have some alteration in this pathway. In summary, Dr. 

Ciriello noted that PI(3)K/Akt signaling is consistently altered in cancers, albeit to different 

extents and by different mechanisms. Mutual exclusivity analysis across multiple cancers unveils 

the underlying heterogeneity of the disease, thus suggesting subtype-specific candidate 

therapeutic targets. 

 

Genome-Wide Co-Localization Studies of Somatic Copy Number Alterations and Germline 

Common Variant Risk Loci in Cancer  

Marcin Imielinski, M.D., Ph.D.; Broad Institute 

 

Dr. Imielinski began by stating that germline risk variants and somatic mutations are two central 

facets of cancer genomics. Common cancers are 2-4-fold more likely in first-degree family 

members of affected patients, although cancer risk is mediated by complex polygenic 

inheritance. Rare, highly-penetrant variants can explain 5% and 20% of the heritable risk for 

breast and colorectal cancers, respectively. However, genome-wide association studies (GWAS) 

have identified common, mildly-penetrant variants that explain 10%, 23%, and 6% of the 

heritable risk for breast, prostate, and colorectal cancers, respectively. Germline cancer 

susceptibility loci frequently mutated in cancer include TP53, APC, RB1, and CDKN2A. GWAS 

has been used to quantify the overlap with somatic copy number alteration studies (SCNA; 

Beroukhim R, et.al. Nature 2010;463:899-905) and to determine the significance against a null 

model built via permutation. 297 cancer loci from the National Human Genome Research 

Institute’s GWAS database were compared against significant SCNA peak regions from pan-

tumor and sub-analyses of 20 tumor types. Analysis of cancer versus non-cancer-associated 

GWAS regions showed a significantly enriched overlap with respect to regions of amplification 

but not with regions of deletion. Dr. Imielinski then asked whether germline SNP status confers 

risk for specific somatic alterations. Allelic bias has been observed in somatic copy number 

alterations, and an allelic distortion test can measure whether a given allele has unique features 

that contribute to bias. This test measures the frequency a given allele is amplified or deleted at 

each heterozygous SNP. None of 36 cancer-GWAS loci that intersected a somatic amplification 

peak region showed significant allelic distortion. However, distortion was observed at the 

CCND1 locus across many cancers and cell lines; the “C” allele was amplified much more 

frequently than the “T” allele. The biologic significance of this phenomenon is not known. In 

summary, Dr. Imielinski noted that significant overlap of germline GWAS peaks and SCNAs 

(e.g., amplifications, and amplifications plus deletions) was observed across cancer types, 

providing the first evidence for genome-wide colocalization of germline susceptibility variants 

and somatically altered loci.  

 

One participant asked why heterozygous loci were chosen for these experiments, to which Dr. 

Imielinski replied that results were cleaner because a simple statistical test can be used to 

determine selective advantage. These experiments focused solely on somatic mutations. 
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Correlating Protein Phosphorylation with Genomic Alterations in Cancer  

Jianjiong Gao, Ph.D.; Memorial Sloan-Kettering Cancer Center 

 

Dr. Gao began by noting that RPPA acts as a quantitative, high-throughput, multiplexed, and 

inexpensive ELISA in which each slide is developed using a single antibody. RPPA data have 

been generated for six tumor types (breast, ovarian, colorectal, endometrioid, glioblastoma, and 

kidney) using protein antibodies that include PTEN, TP53, ER, and AR. Antibodies have been 

developed to phosphoproteins and proteins implicated in numerous signaling pathways, 

including Rb, p53, and PI(3)K/Akt. Dr. Gao noted that ERBB2 mRNA, protein, and 

phosphorylation levels are well correlated in breast cancer, whereas ER and GATA3 protein 

levels differ in breast cancer subtypes. PTEN deletion and under-expression are correlated with 

elevated phospho-AKT (pAKT) in glioblastoma and breast, ovarian, and colorectal cancers. 

PhosphoAKT has diverse targets that regulate proliferation, invasion, and apoptosis; it 

contributes to breast cancer progression and confers resistance to conventional therapies. But 

what genomic event activates AKT in breast tumors? Loss of PTEN, but not PTEN mutation, is 

strongly associated with pAKT, whereas PIK3CA mutations and RTK amplifications are not 

associated with elevated pAKT. To assess other genomic events that could explain AKT 

phosphorylation in breast cancer, an enrichment test was applied using all GISTIC ROIs and 

frequently mutated genes. Preliminary results suggest that CAMK1D amplification and AKT1 

E17K mutation may play roles. In summary, Dr. Gao noted that genomic and proteomic data 

correlate well at the level of individual genes and proteins. However, downstream effects are 

more difficult to link to genomic events. Some (but not all) cases of AKT phosphorylation can be 

explained, and analysis of genomic event combinations may be helpful in this regard. Systematic 

analysis of all antibodies is needed, and correlations among protein data may help to elucidate 

active cancer signaling pathways. 

 

Session II 

Chair: Ilya Shmulevich, Ph.D.; Institute for Systems Biology 

 

Lead Talk: Integrative Analysis and Interactive Exploration of Data from TCGA 

Ilya Shmulevich, Ph.D.; Institute for Systems Biology 

 

Dr. Shmulevich began by noting that TCGA is producing a wealth of rich and heterogeneous 

data (e.g., gene expression, CN, methylation, clinical data) that are continuous, discrete, 

categorical, and, in some cases, missing. As such, analyzing these data in an integrated fashion is 

computationally and statistically challenging. Pairwise analysis seeks to identify correlations 

between two data elements, such as gene expression and methylation or mutation and clinical 

outcome, using either single or different data types. To identify associations, integrated analysis 

requires a feature matrix that can incorporate clinical information, tumor characteristics, and 

other data that may be generated externally using other algorithms. Such analyses have identified 

many interesting associations in TCGA data. For example, in gliomas, IDH1 status has been 

shown to be related to the CpG island methylator phenotype (Noushmehr H, et.al. Cancer Cell 

2010;17:510-522). As an example of a categorical association with a continuous variable, 

elevated expression of ESR1 has been identified as a distinguishing feature of the luminal 

subtype of breast cancer (Sorlie T, et.al. PNAS 2003;100:8418-8423). Integrated analyses of 

TCGA data have also shown that most mutations of TP53 occur in the DNA-binding domain and 

that samples where this is true exhibit lower expression levels of downstream target expression. 
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In ovarian carcinoma, RAB25 expression is associated with promoter methylation (TCGA 

Research Network. Nature 2011;474:609-615); high methylation levels correlate with lower 

expression. Moreover, PRAC expression and methylation are both strongly correlated with the 

clinical parameter, “anatomic organ subdivision.”  

 

Dr. Shmulevich noted that one goal of integrative analysis is to understand mechanistically how 

disruption causes molecular networks to cease functioning. For example, Wnt signaling is 

aberrant in colorectal cancer, and integrative analysis of RNA transport, methylation, and 

translation data can provide insight into the mechanisms that affect transcription and function in 

this cancer type. Such analyses of colorectal cancer data have identified many relationships 

between clinical features. For example, MLH1 methylation is associated with microsatellite 

instability (MSI) and CIMPH methylation, whereas BRAF mutations associate with MSI/CIMP 

expression clustering. Based on parameters such as histologic type, lymphatic invasion, and 

tumor stage, integrative analysis can identify an “aggressiveness summary” that details the 

correlation between genes and clusters of clinical features that associate with aggressive disease 

(House CD, et.al. Cancer Res 200; 70;6957-6967). Interactive tools can identify clinically-

associated genomic hotspots. 

 

However, relationships between gene expression and cancer subtype or outcome are often not 

one-to-one, especially when data are heterogeneous. For example, genes A and B, when taken 

individually, may not be associated with outcome C, but their combination may provide a 

predictive value for outcome C. To help with multivariate analysis of heterogeneous data, 

Random Forest (RF)-ACE (http://code.google.com/p/rf-ace) has been developed. RF-ACE is a 

multivariate statistical inference method based on ensembles of decision trees that seeks to reveal 

significant associations between features in the input data matrix. RF-ACE has a high predictive 

power and is resistant to over-fitting. It can handle mixed variable types, does not require 

imputation of missing variables, and is based on random sub-sampling rather than on 

combinatorial search. Statistical testing removes redundant features, enabling a fast and portable 

implementation in C++. RF-ACE can address computational challenges such as mixed data 

types, tens of thousands of features in hundreds of samples, missing data, correlated features, and 

nonlinear, noisy, and multivariate relationships. This method selects particular features of 

interest, and data are split into smaller disjoint sets, essentially building “decision trees” that can 

be aggregated to improve identification of important features and to observe how these features 

behave in comparison to artificial contrasts. An importance score is assigned to each feature, as 

certain features are strongly associated with numerous other features (“bundles”). While this tool 

shows the features associated with each chromosome, the snapshot is static. An interactive tool, 

Regulome Explorer (explorer.cancerregulome.org), has been developed that allows users to 

explore multivariate relationships in the data (e.g., the association of IDH1 mutations with the C-

GIMP methylation phenotype in GBM; TP53 mutations associated with CDKN2A and TP73 

methylation). However, these tools must be integrated with information from the literature, 

protein-protein interactions, and other databases to get a complete understanding of the 

associations implicated in cancer processes. To look at associations in conjunction with the 

literature, Pubcrawl can be used to reveal the similarity between two terms in PubMed. Dr. 

Shmulevich noted that this tool will be integrated into Regulome Explorer in the near future.  

 

One attendee noted that some features of aggressiveness are correlated, yet a Fisher’s test 

assumes that all variables are independent. Dr. Shmulevich replied that RF can handle correlated 
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features, although this tool was not used when analyzing the aggressiveness data. Because 

features are not independent, a weighted Fisher’s method was used to “tamp down” features that 

are so heavily associated as to overwhelm the signal from lesser-associated features. He noted 

that Regulome Explorer allows users to filter results according to importance scores and 

correlation to help weed out false discoveries. 

 

Absolute Quantification of Somatic DNA Alterations in Cancer Reveals Frequent Genome 

Doublings in Human Cancers  

Scott L. Carter, Ph.D.; Broad Institute 

 

Dr. Carter began by noting that purity and ploidy determine the power to detect mutations in 

cancer genomes; the observed copy number (CN) signal is proportional to locus concentration 

for sequencing and hybridization methods. Sequencing can be used to identify subclonal point 

mutations, although discrete allelic fractions are obscured by tumor purity and local copy 

number. The recently-developed ABSOLUTE algorithm uses cellular multiplicity (an integral 

allele count) to classify point mutations. Equivalent nucleotide substitution frequencies for clonal 

and subclonal point mutations rule out contamination, thereby providing a multiplicity estimate 

to classify mutated genes. ABSOLUTE was applied to search for frequently homozygous genes, 

such as tumor suppressors, in TCGA ovarian cancer specimens. These analyses revealed that 

TP53 was present at two or more copies per cancer cell, suggesting that its mutation is likely to 

be an early event in ovarian carcinogenesis. Analysis of genome doublings indicates a bimodal 

distribution of ploidy in human cancer. Absolute allelic CN data suggest that high-ploidy 

samples evolved via a genome-doubling event. Genome doubling varies across human cancers; 

at least 60% of ovarian cancers analyzed have at least one doubling, whereas ALL had almost 

none. In a pattern observed across many cancer types, genome doubling occurs after aneuploidy, 

whereas loss of heterozygosity (LOH) precedes doubling. Genome-doubled tumors have more 

copy alterations, yet genome-doubled ovarian cancer evolves differently. Of the 15 NF1 

mutations identified in a set of 214 TCGA ovarian carcinomas, 13 occurred in non-doubled 

samples, in which case they were homozygous. Dr. Carter noted that these results show that 

selection acts specifically on recessive inactivation of NF1. Moreover, no amplified mutations in 

NF1 were observed in doubled samples. In contrast to p53, NF1 mutators do not progress via 

genome doubling. Clinical correlations associated with genome doubling include patient age at 

diagnosis and time to recurrence. One attendee asked why the mutant allele spectrum differs 

when samples are contaminated, to which Dr. Carter replied that these samples tend to contain an 

excess of germline variants. 

 

Predicting the Impact of Mutations in Cancer using an Integrated Pathway Approach  
Sam Ng; University of California, Santa Cruz 

 

Dr. Ng began by stating that his research aims to identify driver mutations and their modes of 

action, such as gain- and loss-of-function (GOF and LOF). Many recurrent, low-frequency 

mutations remain poorly characterized, and understanding the modes of action of these mutations 

can provide insight into disease mechanisms and enable treatment. The Ng laboratory has 

recently developed PARADIGM, a method that utilizes functional genomic data and pathways to 

predict LOF or GOF. LOF and GOF occur in the context of pathways, and PARADIGM uses CN 

expression upstream and downstream of a mutation and sets of pathways to infer gene-level 

activities. Discrepancy scores between upstream and downstream data differ between mutated 
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and non-mutated samples; a more negative discrepancy score is indicative of LOF. Given the 

same network topology, how likely would a gain or loss of function be called? Passenger 

mutations are not discrepant. Applying discrepancy analysis to TCGA colorectal cancer 

specimens identified four non-discrepant genes with sufficient pathway annotations. In summary, 

Dr. Ng noted that discrepancy analysis combines functional genomic data such as CN and 

expression with pathway information to differentiate between neutral, GOF, and LOF mutations. 

To date, the approach has successfully identified RB1 LOF in glioblastoma and NFE212 GOF in 

lung cancer. Discrepancy analysis is specific and does not identify discrepancies concordant with 

MutSig calls. Identifying potential GOFs can reveal possible treatments that could apply to 

sensitive tumors or cell lines.  

 

Discussion: 

 

One attendee asked if the method could be extended to identify a switch of function. Dr. Ng 

replied that this may be possible, although it would likely be difficult. Dr. Ng noted that 

PARADIGM collects and collapses all mutations that occur on one gene. One attendee suggested 

that it may be useful to consider that different amino acid changes on one gene may have 

opposing effects. Another participant asked why a bimodal distribution of discrepancies is 

observed in mutant samples, to which Dr. Ng replied that this could reflect a neutral mutation, 

even if it is non-silent.  

 

TCGA Computational Histopathology Pipeline Reveals Subtypes and their Molecular 

Signatures  

Hang Chang and Bahram Parvin, Ph.D., M.S.; Lawrence Berkeley National Laboratory 

 

Dr. Parvin began by stating that the computational histopathology pipeline captures the 

molecular basis of each morphometric subtype. In the case of GBM, specimens are curated by 

removing tissue sections that contain artifacts (e.g., tissue folds, pen marks, scanning anomalies). 

Analysis of a typical GBM specimen requires one week of computing time, produces large 

datasets, and must account for biologic variation. The Parvin laboratory has developed robust 

and efficient image analysis algorithms (tcga.lbl.gov) to compute morphometric features and 

meta-features. These tools enable subtyping based on selected features or reduced dimensionality 

and facilitate the association of molecular information with morphometric subtypes. The 

algorithm enhances nuclear segmentation in the presence of technical variations. New images are 

normalized against reference images to construct a probability model based on a Gaussian 

distribution. Seed detection methods provide the shape and local statistics. Once a nuclear 

feature can be delineated, a representation must be completed to identify structural features. 

Based on cellularity and nuclear size at the patient level, four GBM subtypes have been 

identified. This algorithm enables the user to calculate the ability of each subtype to predict 

survival. Since a tumor is heterogeneous, can it be queried for subtypes at the block level to learn 

about tumor composition? Based on tumor histology, GBM patients can be classified as 

belonging to one subtype, and high cellularity and low nuclear size are better predictive of a 

more aggressive therapy. In conclusion, Dr. Parvin noted that many approaches can be used to 

parse genomic data, and different indices lead to alternative subtyping, which in turn enable 

alternative biological interpretations. As such, genomic association has the potential to reveal 

new insight. 
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One attendee asked if the Parvin group had compared the heterogeneity index with SNP data, to 

which Dr. Parvin replied that this was forthcoming. Morphologic features have been correlated 

only with gene expression data at this point.   

 

Algorithms for Automated Discovery of Mutated Pathways in Cancer  

Ben Raphael, Ph.D.; Brown University 

 

Dr. Raphael noted that one key challenge for cancer genome sequencing is distinguishing 

between driver and passenger mutations observed in high-throughput analyses. Recurrent 

mutations—those occurring more frequently across a patient cohort than would be expected by 

chance--can serve as one rubric to prioritize mutations as possible drivers. To identify recurrent 

mutations, a statistical test can be applied for each individual gene, followed by a multiple 

hypothesis correcting procedure to adjust for the number of statistical tests performed. The first 

two TCGA publications used such a procedure but identified a relatively small list of statistically 

significant genes. Moreover, many genes were mutated in multiple patients at levels insufficient 

to achieve statistical significance. Because cancer is a disease of pathways, the standard 

approach to identify driver mutations begins with networks of known pathways. Limitations of 

this approach include testing only existing pathways without considering pathway topology and 

challenges resolving issues of crosstalk between pathways. Dr. Raphael then discussed two 

methods less biased by prior knowledge, HotNet and Dendrix, which were developed to examine 

large numbers of genes. HotNet uses a predefined network to identify connected subnetworks 

mutated in a significant number of patients. This method acknowledges the importance of local 

network topology (Vandin F, et.al. J Comp Biol 2011;18:507-522). When applied to 316 TCGA 

ovarian cancer specimens, HotNet identified 27 subnetworks that contained seven or more genes. 

Twelve of the 27 subnetworks showed significant overlap with known pathways or protein 

complexes. In contrast to HotNet, the Dendrix algorithm supposes that driver mutations are rare 

and that a cancer pathway has one driver mutation per patient, thereby imposing mutual 

exclusivity between mutations. The algorithm also assumes that pathways should have high 

coverage and seeks to identify genes with high coverage. When applied to 199 AML specimens, 

Dendrix identified two (non-validated) top-scoring sets with many co-occurrences within and 

between the sets. On these same specimens, HotNet identified five (non-validated) subnetworks 

containing five or more genes. HotNet analysis of 514 TCGA breast cancer specimens identified 

13 (non-validated) networks containing eight or more genes. Dr. Raphael concluded by noting 

that future efforts will focus on incorporating additional data types such as gene expression and 

methylation analyses and performing pre/post filtering of predictions. One participant asked if 

there were any known exceptions to the exclusivity assumption, to which Dr. Raphael replied 

that many gene sets are not exclusive, while others are exclusive but do not interact with the 

network. Another attendee asked what happens if the driver mutation actually occurs prior to 

activation of p53 or another gene identified using these methods. Dr. Raphael replied that these 

methods do not provide temporal information.  

 

The Spectra of Somatic Mutations across Many Tumor Types  

Michael S. Lawrence, Ph.D.; Broad Institute 

 

Dr. Lawrence began by noting that the sequencing of thousands of genomes from multiple tumor 

types has revealed vast differences in the rates, prevalence, and types of mutations. The MutSig 

scoring algorithm has been developed to identify significantly mutated genes, assuming a 
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background mutation rate that is uniform across sequence contexts, patients, and genes. 

However, the mutation rate is heterogeneous across genes, thus challenging efforts to identify 

driver genes. Two distributions with the same average number of mutations could be quite 

different from one another. Analysis of data from 457 TCGA lung cancer specimens has 

identified 843 significantly mutated genes, many of which (e.g., olfactory receptors) are highly 

unlikely to be driver genes for lung cancers. Highly expressed genes have lower mutation rates 

(Chapman MA, et.al. Nature 2011;471:467-472). Given that the background mutation rate and 

replication rate vary greatly across the genome, late replication explains most of the noted 

olfactory receptors. Dr. Lawrence noted that the mutational landscape is not “flat” based on gene 

expression level, replication time, and mutation rate. After filtering on the basis of influence on 

“neighbor” genes, the 843 genes previously identified reduce to 52 genes. MutSig can then be 

run on a pan-cancer set to identify the top significantly mutated genes across tumor types.  

 

One attendee noted that there is a relationship between mutation count, the probability of a 

mutation to arise, and the proliferative advantage a mutation confers. Dr. Lawrence replied that 

this relationship is assumed, although it may prove false. The MutSig algorithm will soon enter 

beta testing and will be made available to the community.  

 

An Integrated View into Multivariate Associations Inferred from TCGA Cancer Data  

Richard Kreisberg, M.S.; Institute for Systems Biology 

 

Mr. Kreisberg began by noting that visual analytics tools identify advantageous ways to explore 

large, heterogeneous datasets to formulate testable hypotheses about different aspects of the data. 

He noted that a successful tool is interactive, allows the user to reason easily based on what 

he/she sees, and connects data to other sources and tools. Emergent technologies include 

browser-based graphical rendering (e.g., SVG, Canvas, WebGL, and Flash), scalable cloud 

services, adaptive data models (e.g., noSQL technologies), graph databases (e.g., Neo4J, 

OrientDB), and graph computation to reason on the topology of the data. The open-source 

Regulome Explorer (http://explorere.cancerregulome.org) tool incorporates applications such as 

Random Forest, colorectal aggressiveness scoring, and All Pairs Significance to assemble the 

association topology. Future technologies include network topologies that provide explicit, 

retrievable states and allow the user to import data. One attendee asked if Regulome Explorer 

users can load data into the program. Mr. Kreisberg noted that this would be possible by 

modifying the code, although the algorithm is not set up explicitly to enable this function.  

 

Friday, November 18 

 

Session III 

Chair: Marco Marra, Ph.D.; British Columbia Cancer Agency 

 

Lead Talk: Sequence-Based RNA Profiling: Expression Maps at Base-Pair Resolution  

Marco Marra, Ph.D.; British Columbia Cancer Agency 

 

Dr. Marra began by noting that RNA sequencing (RNASeq) enables analyses of gene and 

isoform expression and detection of gene fusions, expressed mutations, and cancer subtypes. In 

addition, miRNA sequencing enables analyses of cancer subtypes and regulatory networks. 

These techniques thus offer the opportunity to create a map of the cancer genome, and RNASeq 
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data can be used to define cancer types and subtypes. A cohort of RNASeq tools (Garber M, 

et.al. Nat Methods 2011;8:469-477) is evolving along with a wealth of RNASeq datasets. Dr. 

Marra noted that gene discovery efforts rose rapidly with the increase in the number of reads, 

followed by a plateau. Exon wiring maps represent the primary strength of RNASeq data, as 

transcripts may be altered in numerous ways during splicing to affect protein products. 

Expression profiling data provide examples where exons are dropped or retained. De novo 

assembly can be used to identify structures not found using alignment-based platforms. 

Platforms such as Trans-ABySS (Robertson G, et.al. Nat Methods 2010;7:909-912) align contigs 

back to the genome, thus enabling alignment-independent detection of gene fusions, alternative 

transcripts, internal and partial tandem duplications, and insertions/deletions. Trans-ABySS has 

been applied exhaustively to verify 39 AML gene fusions, 25 of which are novel. This pipeline 

requires manual interrogation but produces high verification rates.  

 

RNASeq has recently been used to verify mutations previously defined by WES in TCGA 

squamous cell lung tumors. When combined with genome data, RNASeq data can rapidly verify 

mutations and confirm fusions detected using low-pass sequencing of colorectal cancer 

specimens. TCGA is also currently building and storing miRNA sequencing data, with 

approximately 3000 miRNA Seq profiles representing 18 cancer types currently stored at 

TCGA’s Data Coordinating Center. In animals, miRNAs may be generated through several 

pathways. miRNA biogenesis produces mature miRNA and miRNA*, and non-canonical 

miRNA variants (e.g., isomiRs) may further expand the target gene repertoire. 191 miRNA 

libraries have been sequenced using TCGA AML specimens, revealing 270-422 known and 16 

unknown miRNAs. These data reveal the ratio of star- and mature-strand miRNA. miRNA 

sequencing may also be used to cluster cancer subtypes, and mRNA and miRNA data may 

concord. RNASeq may also be used to inform about anti-sense gene expression and its potential 

regulatory consequences. Antisense transcription regulates TRα alternative splicing, which is 

associated with epigenetic splicing. RNASeq can also address antisense-correlated splicing. 

Strand-specific RNASeq provides knowledge of individual strands to which sequences map 

(Parkhomchuk D, Nucleic Acids Res 2009;37:e123; Levin JZ, et.al. Nat Methods 2010;7:709-

715).  

 

One attendee inquired whether verification of a mutation identified by RNASeq requires a 

specific nucleotide. Dr. Marra replied that RNASeq data are typically matched against genomic 

data; if they concord at a particular locus, then the locus is verified. Another participant 

commented that using RNASeq for screening generates a high rate of false positives for samples 

that do not have the known mutation. Dr. Marra responded by noting that a mutation identified 

from RNASeq data requires normal tissue to conclude that it is a somatic event. However, if no 

normal specimen is available, RNASeq can be used for expressed recurrent mutations, which 

may not be somatic events.  

 

RetroSeq: A Tool to Discover Somatic Insertion of Retrotransposons  

Elena Helman; Broad Institute 

 

Ms. Helman began by noting that retrotransposons are mobile genomic elements that copy and 

paste themselves across the genome via an RNA intermediate, thereby producing two copies of 

the original element. Retrotransposons occur naturally in cancer and are drivers of genome 

evolution. While they comprise more than 40% of the human genome, most retrotransposons are 
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inactive, although some remain “hot.” Retrotransposons represent a major source of genetic 

variation, spanning approximately 10,000 polymorphic sites. It has been estimated that two 

European individuals differ by 600-1000 retrotransposons. Two of the most abundant 

retrotransposon elements are LINE-1 (L1), which contains two open reading frames, and ALU, 

which relies on the L1 retrotransposition machinery. Retrotransposon insertions into the genome 

can disrupt protein function, affect promoters, create or disrupt sites for RNA splicing, and lead 

to further genomic rearrangement. Aberrant retrotransposon insertions have been identified in 

breast, lung, and colorectal cancers. To identify the extent of somatic retrotransposon insertions 

throughout the cancer genome using paired-end sequencing data, the Meyerson laboratory has 

developed RetroSeq, a tool that identifies the positions of putative retrotransposon insertions by 

aligning reads to the retrotransposon consensus sequence and locating clusters of pair-mates. The 

tumor and normal genomes are then compared to identify sites unique to the cancer genome. 

 

RetroSeq was shown to be sensitive and specific in a simulation that searched for 226 L1 and 

732 ALUs inserted into a BAM file. L1 insertions were then examined in nine TCGA colorectal 

cancer tumor/normal pairs to identify 1470 L1 germline events and 221 L1 somatic events.  

Future studies in this area will include experimental validation of RetroSeq (in progress), 

extension to other tumor types, and integration of orthogonal data. In conclusion, Ms. Helman 

noted that RetroSeq leverages paired-end sequencing data to localize somatic retrotransposon 

insertions. This approach, which identifies novel insertions present in a tumor but not in its 

matched normal tissue, has provided evidence for reactivation of retrotransposon mobilization in 

cancer. She noted that the approach uses paired reads in which only one end is unique but does 

not consider reads in which both ends align to the repeat.  

 

Patient-Specific Pathway Analysis using PARADIGM Identifies Key Activities in Multiple 

Cancers  

Josh Stuart, Ph.D.; University of California, Santa Cruz 

 

Dr. Stuart began by observing that the comparison of multiple data types can be overwhelming. 

In cellular systems, some of the underlying machinery is known due to data collection and 

curation efforts such as Reactome, KEGG, and Pathway Commons. However, data integration is 

the key to interpreting gene function correctly. Gene expression does not always indicate 

activity; downstream effects often provide clues. For example, if a highly expressed transcription 

factor is turning on targets, then one could infer that the factor is involved. However, if the 

transcription factor is expressed only at a low level, different conclusions may be reached, and 

multiple modalities may be required for certainty. The Stuart laboratory has recently developed 

PARADIGM (Vaske CJ, et.al. Bioinformatics 2010;26:i237-i245), an integrative approach based 

on probabilistic models that provides detailed models of gene expression and interaction. This 

approach analyzes data from a cohort of patients using a pathway model of cancer to determine 

whether a gene of interest is active. For ovarian cancer, FOXM1 emerges; it is central to cross-

talk between DNA repair and cell proliferation. IPL genes stratify ovarian cancer by survival 

time. MYC is characteristically altered in colorectal cancer. Differential subnetworks thus 

identified can form “super-pathways” that can then identify master regulators that could predict 

drug response. For instance, PARADIGM analysis of TCGA breast cancer specimens predicts 

that PLK1 is a target for treating basal breast cancer. HDAC inhibitors are similarly identified as 

luminal hub markers, as the HDAC network is down-regulated in basal breast cancer cell lines, 

and basal breast cancers are resistant to HDAC inhibitors. PARADIGM also supports 
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discrepancy analysis, which examines differences when the pathway analysis is run twice (once 

with upstream neighbors and again with downstream neighbors). Pathway discrepancy provides 

an orthogonal view of the importance of mutations by enabling the probing of infrequent events 

and supporting the detection of non-coding mutation impacts and the presence of pathway 

compensation. PARADIGM also enables users to associate the presence of a mutation with 

potential pathway activities, thus inferring a connection between a mutation and phenotypes. 

Pathway analyses can also inform a global “pan-cancer map” by connecting molecular subtypes 

across tissues. 

 

In summary, Dr. Stuart noted that information flow should be structured to accurately model 

gene activity using multi-modal data, with an initial focus on known cancer biology. Current 

efforts seek to identify new genes and interactions and to stratify patients into pathway-based 

subtypes. Sub-networks are predictive markers and can be used to simulate scenarios such as 

drug inhibition, and even rare mutations can be assessed for their biologic significance. 

PARADIGM has recently been included in Firehose, thus enabling public access to CPU-

intensive results.  

 

Morphologic Analysis of Glioblastoma Identifies Morphology-Driven Clusters and Molecular 

Correlates Associated with Patient Survival  

Lee Cooper, Ph.D.; Emory University 

 

Dr. Cooper noted that his group focuses on imaging technologies and is currently using whole-

slide imaging of TCGA specimens to correlate scans of frozen tissue with data from molecular 

studies. TCGA provides scans of frozen tissues and diagnostic-block permanent sections, which 

are analyzed at 20X magnification. The Cooper laboratory also conducts pathology evaluations 

(e.g., percentage necrosis, percentage tumor nuclei) on these specimens. He noted that 

glioblastoma is heterogeneous in appearance and contains cells representing numerous 

morphologies (e.g., astro- and oligo-type cells). Current efforts are underway to create 

algorithms that describe clusters of GBM morphology and to assess whether patients cluster on 

the basis of morphology. Image analysis captures the whole-slide image, for which morphology 

signatures can be calculated, followed by correlative analysis. A morphology “engine” circles 

each nucleus in a cell slide, enabling each cell to be described individually on the basis of its 

characteristics. A patient morphology profile is then created from the composite cell data and fed 

into a clustering engine. Once the patient cluster labels have been established, they are fed into a 

correlative engine to determine whether the morphology clusters correlate with recognized 

genetic alterations. Clustering analysis of 200 million nuclei from162 TCGA GBM specimens 

has identified three prognostically-significant morphologic groups named for the functions of 

associated genes (e.g., cell cycle, chromatin modification, and protein biosynthesis). Efforts are 

currently underway to devise representative nuclei for each group that will aid in visualization. 

This method was validated in a separate set of 84 GBM specimens from the Henry Ford 

Hospital, where survival trends correlated with data from TCGA. At present, no definitive 

association has been made between survival and molecular subtype/pathology, although the 

nuclear lumen localization was most highly enriched in cluster-associated genes. In conclusion, 

Dr. Cooper noted that whole-slide images contain signals related to molecular status and 

outcome. Image analysis can provide scalable, quantitative measurements of cellular 

morphology. Datasets such as those generated by TCGA present unique opportunities to 
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correlate morphology with genomics and patient outcome, although more complex models will 

be required to account for disease heterogeneity. 

 

One attendee asked Dr. Cooper to elaborate on the relationship between tumor nuclei and 

stromal components. He noted that no single feature is significant for prognosis, although 

clustered features provide some prognostic significance. It was also noted that TCGA has now 

updated its requirement for imaging magnification from 20X to 40X.  

 

Validated Targets Associated with Curatively Treated Advanced Serous Ovarian Carcinoma 

Douglas A. Levine, M.D.; Memorial Sloan-Kettering Cancer Center 

 

Dr. Levine noted that cancer genomics supports discovery and technology development, whereas 

applied cancer genomics can address clinical questions. TCGA is well-suited to support the latter 

goal due to its richly annotated data. He stated that treatment of ovarian cancer begins with an 

operation to remove all visible cancer, followed by chemotherapy. Survival rates from this 

approach can be short-term (five months) or long-term (more than five years). However, a subset 

of patients who have advanced ovarian cancer show no evidence of recurrence after one set of 

treatments (initial surgery plus chemotherapy). Differences in gene expression profiles between 

these patients and long-term survivors whose cancer has recurred will shed light on mechanisms 

of drug resistance in these cancers. A recent study by the Levine laboratory included patients 

with advanced-stage high-grade serous ovarian cancer who underwent primary cytoreductive 

surgery and platinum-based chemotherapy. Data were available for 14 patients from MSKCC 

and 16 non-overlapping TCGA patients, all with Stages III or IV ovarian cancer, who were 

curatively treated. 42 patients who recurred and survived more than five years were available as 

controls for each of these datasets. NanoString gene expression used to validate 86 targets from 

TCGA and MSKCC identified 19 overlapping genes. This approach was validated externally 

using 57 independent fresh-frozen, paraffin-embedded tissues. These analyses showed that 

CYP4B1 was overexpressed in curatively treated serous ovarian cancer patients. Dr. Levine 

noted that these studies excluded platinum-resistant patients; thus, long-term survival may reflect 

a taxane-based phenomenon. 

 

Massively Parallel Validation of Cancer Mutations and other Variants Identified by Whole 

Cancer Genome and Exome Sequencing  

Georges Natsoulis, Ph.D.; Stanford University 

 

Dr. Natsoulis noted that most genomic projects begin with a large number of potential variants, 

which ultimately becomes narrowed. Two methods, OS-Seq and single-strand circularization, 

address multiple objectives. OS-Seq synthesizes capture probes on the flow-cell lawn 

(Myllykangas S, et.al. Nat Biotech 2011;29:1024-1027) and captures the target region from 

cancer genomes. Two primer probes are used to provide “double strand” coverage of the target, 

thereby improving mutation discovery based on both strands. OS-Seq, which analyzes fresh 

DNA from flash-frozen tissues, can also target loci-like extended exons and provide even 

coverage of genomic region targets. The tool’s advantages include higher specificity and 

sensitivity of mutation detection, higher accuracy by targeting of any non-repetitive human 

genome region, accurate variant discovery, identification of rearrangement breakpoint sequences, 

efficient workflows, and low (< 1 g DNA) sample requirements. 
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Single-strand genomic circularization features a single-stranded substrate compatible with FFPE 

material and capture probes that can be placed at any point in the fragmented DNA. A pilot study 

assessed the approach’s yield and specificity of detection in 628 genomic regions from high-

quality genomic DNA from flash-frozen tissue and low-quality DNA from FFPE tissue matched 

by organ and individual. Dr. Natsoulis noted that FFPE processing can introduce artifacts at the 

rate of approximately one per 10-15 kB (one error per five genes). Results of the analysis 

showed 85% heterozygote detection over a 120 kB target region. Specific classes of artifacts 

observed included transitions and transversions. The two methods can be applied in tandem to 

carry out single-lane mass validation of WGS. A pilot project using WGS and WES of matched 

normal blood, primary gastric tumor, and ovarian metastasis identified 386 coding variants that 

included SNVs, in/dels, and SVs (see the open-access OligoGenome Resource 

(http://oligogenome.stanford.edu; Newburger DE, et.al. Nucleic Acids Res 2011;Nov 18:[Epub 

ahead of print]).  Future efforts for OS-Seq include validating mutations and rearrangements 

from cancer genomes and conducting “onconome” and exome applications. Single-strand 

circularization efforts aim to carry out follow-up clinical applications using archival FFPE 

specimens. Both methods are scalable for single-lane validation of cancer genomic projects. Dr. 

Natsoulis noted that these methods have numerous applications beyond targeting, including 

analysis of cDNA.  

 

SuperPathway Analyses of Luminal and Basaloid Breast Cancers from TCGA  

Christopher Benz, M.D.; Buck Institute for Research on Aging 

 

Dr. Benz began by noting that clinical subtypes of breast cancers inform prediction, whereas 

intrinsic subtypes inform prognosis. The biological and clinical heterogeneity of breast cancer is 

most evident by its different intrinsic transcriptome subtypes (e.g., PAM50), which has yet to be 

employed clinically. With the exception of the HER2 subtype, the pathways and signaling 

networks driving and distinguishing other transcriptome subtypes (e.g., basaloid, luminal A and 

luminal B) remain largely undefined. To discover pathway differences between these three 

intrinsic subtypes, the pathway inference tool, PARADIGM, was used to analyze approximately 

500 TCGA breast cancer samples. PARADIGM integrates DNA copy number and transcriptome 

data to infer patient-specific pathways from multi-dimensional cancer genomics data (Vaske, 

et.al. Bioinformatics 2010;26:1237-1245). The algorithm generates a heatmap to show clustering 

of pathway activities into potential networks. Annotation of genes that are c-MYC repressed and 

c-MYC activated indicated differentially-activated subnetworks within the consensus clusters. 

Pathway enrichment identified four common differences shared by luminal A and B that 

differentiated these subtypes from basal cancers. For example, the FOXA1/ER pathway is higher 

in luminal cancers, whereas the HIF1A pathway is elevated in basal cancers. The two luminal 

subtypes also show differential network hub activities, with major differentiating hubs including 

MYC/Max, FOXM1, PLK1, and MYB. Analysis of TCGA dataset shows that luminal B is 

associated with a worse overall survival than luminal A. These analyses indicate that activity 

hubs can distinguish overall survival; cohort dichotomization by the MYC/Max or FOXM1 

pathway activities prognostically defines outcome as effectively as does luminal status. Dr. Benz 

concluded by noting that unsupervised consensus clustering based on PARADIGM inferred 

activities produced by pathway activity clusters with significant intrinsic breast cancer subtype 

associations. Pairwise comparisons between intrinsic breast cancer subtypes identified elevated 

FOXA1/ER and lower HIF1A pathway activities as shared features differentiating luminal and 

basal cases. SuperPathway analyses identified MYC/Max, FOXM1, MYB and PLK1 as network 
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hubs with elevated activities in luminal B versus luminal A breast cancers, with two of these 

showing comparable prognostic value and survival associations as luminal status. SuperPathway 

analyses may help identify pathway and signaling differences between clinical and intrinsic 

breast cancer subtypes and ultimately point to subtype-specific therapeutic strategies.  

 

One attendee asked if subsets of luminal B cancers relate to progesterone receptor (PR) 

proliferation. Dr. Benz replied that the subsets are related to proliferation, although not of PR. He 

noted that PARADIGM currently contains approximately 1300 curated pathways and that 

SuperPathway analysis identifies features with ten or more interconnections. 

 

Session IV 

Chair: David Haussler, Ph.D.; University of California, Santa Cruz 

 

Lead Talk: Large-Scale Cancer Genomics Data Analysis  

David Haussler, Ph.D.; University of California, Santa Cruz 
 

Dr. Haussler began by describing the Cancer Genome Hub (CGHub) currently being constructed 

to store the massive volume of data (e.g., BAM and VCF files) being produced by TCGA, the 

NCI’s Therapeutically Applicable Research to Generate Effective Treatments (TARGET), and 

Cancer Genome Anatomy Project/Cancer Genome Characterization Initiative projects. The 

CGHub is designed for 25,000 cases with an average of 200 gigabytes per case. Thus, five 

petabytes of data are expected to be deposited, although the resource can be scaled to hold 20 

petabytes and can be co-located with other hosting facilities. CGHub goals include enabling the 

direct comparison and combined data analysis of many large-scale cancer genomics datasets, 

aggregating sufficient data to provide the statistical power to attack the full complexity of cancer 

mutations, setting standards for data storage and exchange, encouraging data sharing, and 

maintaining compatibility (e.g., data formats and access coordination) with other large-scale 

genomics efforts, including EGA, dbGaP, ICGC, the 1000 Genomes Project, and ENCODE. 

 

Dr. Haussler noted that, given the same BAM files, different mutation calling pipelines do not 

completely agree. Researchers are just beginning to investigate accuracy and consistency in the 

detection of structural variation using a case study between UCSC and the Broad Institute to 

analyze whole-genome GBM data from TCGA. Of the 18 genomes available, sixteen were used 

to analyze tumor and normal for GBM at both centers. The BamBam calling pipeline used at 

UCSC detected 167 gene fusions in these analyses, whereas the dRanger program used at the 

Broad Institute detected 188. Of the detected fusions; 136 are potentially overlapping events. 

Two tumor samples contained a majority of the top-ranked called events. Whole-genome 

sequence information showed that independent events lead to somatic homozygous loss of the 

tumor suppressors CDK2NA/B. In 11 of the 16 cases analyzed at both sites, similar events led to 

homozygous loss of CDKN2A/B. Analysis of normal cases is underway. Dr. Haussler noted that 

chromothripsis has been observed in one GBM specimen. This complex fusion creates multiple 

mutations and is difficult to analyze. EGFR amplification/mutation was also commonly reported; 

11 of 17 samples featured chromosome 7 amplifications that included EGFR. Four of these 

eleven samples also featured EGFRviii mutations. Exon 2-7 deletion was observed at low copy, 

suggesting that it likely occurred after amplification events. Copy number states, which are 

generated by plotting the overall CN against the minority allele CN, could perhaps be used to 

identify driver mutations. However, GBM tumors are not purely clonal and contain an arbitrary 
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fraction of subclone parts. Dr. Haussler suggested that a tumor can be thought of as an ecosystem 

in which subclones compete; the more aggressive subclones are the more successful. System 

complexity may be preserved through cooperativity or homeostasis.  

 

One attendee commented that break points occur in repetitive regions, which are not included in 

these analyses. Dr. Haussler noted that sophisticated algorithms can be used with global CN 

analysis to help identify some of these regions. Another participant asked if the subclones 

observed on the chromosome 6p arm could represent non-tumor cells, to which Dr. Haussler 

replied that these analyses account for the total amount of infiltration of non-tumor cells.  

  

RF-ACE for Uncovering Non-linear Associations from Heterogeneous Cancer Data 

Timo Erkkila, M.S.; Institute for Systems Biology 

 

Mr. Erkkila began by observing that an annotated feature matrix that integrates various data 

types can uncover associations from the data. An annotated feature matrix may include hundreds 

of samples per cancer types, and variables may be heterogeneous (e.g., categorical, numerical, 

binary). To address this issue, the Random Forest (RF) algorithm has been created to select 

features from heterogeneous data. RF supports mixed-type data and missing values, and 

predicted targets may represent any type. Moreover, data transformations are unnecessary, and 

RF supports multivariate and nonlinear associations. However, the algorithm has a non-

normalized importance score that merely ranks associations, and prediction performance can still 

be enhanced. An RF implementation, Random Forest with Artificial Contrast Ensembles (RF-

ACE; http://code.google.com/p/rf-ace), provides the added flexibility to support string literals 

and various data formats and to interface easily with default parameter options. RF-ACE requires 

a normalized importance score and includes a statistical testing framework and improved 

predictive power from the Gradient Boosting Tree (GBT) algorithm. 

 

A pilot study was carried out using RF-ACE to identify 19 significant associations for PRAC in 

data from colon and rectal cancer specimens. The top three of these “core features”--HOXB13, 

anatomic organ subdivision, and promoter methylation—were subjected to the GBT algorithm to 

build predictors for novel or missing data. A pipeline was developed to integrate data resources 

and analyze aggregate data with RF-ACE. All associations for all cancer types were stored in a 

database, and the Regulome Explorer browser (http://explorer.cancerregulome.org) was used to 

explore further these associations. In summary, Mr. Erkkila noted that RF-ACE combines useful 

features from various established algorithms for a generic and rapid implementation that is well 

suited to analyze TCGA data. Novel aspects include p-values assigned for associations and GBT 

for prediction. One participant commented that outputs from various sources contain 

redundancies, to which Mr. Erkkila replied that compact sets of good predictors are being 

established. However, this redundancy reduction is part of a roadmap plan for algorithm 

development that has yet to be implemented.   

 

Supporting Subtype Characterization through Integrative Visualization of Cancer Genomics 

Datasets  

Nils Gehlenborg, Ph.D.; Harvard Medical School 

 

Dr. Gehlenborg began by noting that the identification of tumor subtypes has multiple 

implications for early detection, prevention, and treatment of cancers. Analyses of TCGA GBM 
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specimens have revealed four GBM subtypes (e.g., proneural, neural, classical, and 

mesencyhmal) that can be characterized by abnormalities in a small set of genes that include 

PDGFRA, EGFR, NF1, and IDH1. Data used to classify patients according to subtype represent 

a variety of analyses, including mRNA, copy number, and mutation status. These results were 

based on VisBricks, a recently-developed multiform visualization method for large sets of 

heterogeneous data (Lex A, et.al. IEEE Transactions on Visualization and Computer Graphics 

2011;17:2291-2300). TCGA gene-level GBM data were subjected to GenePattern consensus 

non-negative matrix factorization and GISTIC 2.0 analyses. Different numbers of clusters in 

mRNA data were identified, and other groupings of data types (e.g., CN, miRNA, methylation) 

were added to see how patients travel among the groupings. The visualization tool, implemented 

in the Caleydo Visualization Framework, displays clusters as individual, moveable columns that 

can also integrate heat maps. Other data types, such as clinical data, external classifications, 

multivariate data, and batch information, can also be included and mapped onto pathways or as 

Kaplan-Meier plots. The visualization tool can also load data and results from analysis pipelines 

such as the Broad Institute’s Firehose. 

 

Uncovering the Pseudo-Subclonal Structure of Tumor Samples with Copy Number Variation 

Analysis of Next-Generation Sequencing Data  

Yi Qiao; Boston College  

 

Dr. Qiao began by noting that tumor samples will always contain a mixture of DNA from 

mutated and normal cells. The degree of contamination in the tumor by normal tissue can be 

calculated by the ratio read depths for tumor and normal in sequencing data (e.g., BAM files) 

using copy number analysis. Analysis of individual chromosomes reveals differences in tumor 

purity that cluster because the tumor contains more than one subclone or features several 

biologic structures that could contribute to the observed model (e.g., aggregate mutations from 

cancer stem cells). A biologically-motivated, CNV caller-independent model has been developed 

that can simultaneously estimate the normal cell admixture ratio and tumor heterogeneity, 

thereby offering a rapid decomposition of subclone structure that can be applied prior to 

downstream analysis (e.g., SNP calling). Future directions for developing this model include 

validation and working with capture data. One attendee asked how the model represents 

uncertainty, to which Dr. Qiao replied that it may be unable to differentiate based solely on CN.  

 

Comparison and Validation of Somatic Mutation Callers  

Andrey Sivachenko, Ph.D.; Broad Institute 

 

Dr. Sivachenko began by noting that SNVs are defined simply as single nucleotide differences 

from a reference tissue. In an ideal situation, SNVs would be identified by resequencing and 

reading out the results. However, SNVs can be hard to call due to multiple issues with library 

preparation, and sequencing and data processing can produce a spectrum of SNV-like events. 

Issues that may confound the analyses include alignment quality around the event, strandness or 

orientation of supporting reads, sufficient coverage, and sequence context. A successful approach 

must protect against two types of false positives, those identified when there is no actual event 

(e.g., from misread bases, a sequencing artifact, or a misaligned read) or a germline event due to 

low coverage in normal tissue. Cross-sample comparison was initiated with a reference set of 

TCGA specimens to compare, evaluate, and improve mutation-calling algorithms. Comparison 

alone allows the user only to contrast the callers against each other, thus ultimately necessitating 
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a validation process. These studies used data from Phase III of TCGA (20 lung squamous cell 

carcinoma specimens that were subjected to WES at the Broad Institute). The same sequencing 

data were called at four centers (Washington University, The Broad Institute, UCSC, and the 

Baylor College of Medicine) using different algorithms, and resulting call sets were shared 

between the centers for comparison. RNASeq was used for validation. These experiments 

identified shared versus center-specific events, noting that, while there was a large overlap, many 

calls were made by only one center. Center-specific calls generally had different properties that 

could represent specific false-positive modes of each caller or a specific strength of a given 

center’s pipeline. These comparisons revealed a tendency to call center-specific events at 

coverages different from those where the shared events are located. Some center-specific calls 

were questionable upon “manual review,” although many were convincing. RNASeq was used as 

a validation set that offers an independent library construction and different protocol with the 

same sequencing technology. It is possible to call mutations de novo from aligned RNASeq data, 

although this approach may be too conservative. If it is assumed that de novo DNA Seq mutation 

is sufficiently conservative, weaker evidence from RNASeq than what would be required for a 

stand-alone de novo call can be considered as validation. Dr. Sivachenko noted that sensitivity 

depends on coverage and allelic fraction. Because original calls feature a range of allelic 

fractions, it is generally unwise to ask for a fixed, low number of observations in RNASeq. 

However, the allelic fraction strongly correlates between RNASeq and DNA Seq.  

 

When looking for SNVs in RNASeq, every called mutation site with coverage in RNASeq above 

a certain threshold can be considered as “covered.” If a covered site has at least two reads with 

an alternate allele as evidenced by RNASeq, it can be considered to be “validated.” In 

conclusion, Dr. Sivachenko noted that a framework has been established within TCGA for 

evaluating and improving mutation calling algorithms. Efforts are ongoing to validate mutations 

using RNASeq as validation. Currently, none of the four centers has made its caller publicly 

available, although it is expected that centers will do so soon. It was also noted that low-coverage 

in DNA can be problematic; some genes cannot be assessed by RNASeq, thus adding bias to the 

analyses. 

 

Using TCGA Samples to Infer Post-Transcriptional Regulation in Cancer  

Pavel P. Sumazin, Ph.D.; Columbia University 

 

Dr. Sumazin described mechanisms that post-transcriptionally regulate microRNA (miRNA) 

expression and activity. miRNAs are known to act as tumor suppressors and as oncogenes. Dr. 

Sumazin stated that it is important to understand transcriptional and post-transcriptional 

regulation of miRNAs, regulation by miRNAs, and regulation of miRNA activity to understand 

how miRNAs and genes interact. Large-scale, same-sample profiles of mRNA and miRNA 

expression provide the data necessary for computational predictions. Tight post-transcriptional 

control of miRNA biogenesis leads to significant swings in mature miRNA expression. The 

processing machinery for these events includes canonical biogenesis regulators and non-

canonical regulators. For example, the newly-predicted non-canonical regulator, DDX10, 

upregulates miRNA biogenesis in the GBM cell line, SNB19. miRNome-wide profiling in 

response to regulator silencing suggests that there is an abundance of miRNA-specific regulation 

in GBM cell lines, and miRNAs respond differently to the silencing of different regulators. 
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miRNA-activity regulators represent two types: sponge regulators that compete for miRNA 

programs that regulate other RNAs, and non-sponge regulators that activate or suppress miRISC-

mediated regulation of target RNAs. Regulation between PTEN and PTENP1 is an example of 

sponge regulation. PTEN is a tumor suppressor and a key regulator of cancer. PTEN and 

PTENP1 have common miRNA regulators; changes to PTENP1 expression modify the post-

transcriptional regulatory program that targets PTEN. TNRC6 proteins are required for miRISC 

function and are examples for non-sponge miR-activity regulators. Deleterious somatic 

mutations to TNRC6A may contribute to tumorigenesis of gastric and colorectal cancers. Using 

genome-wide screening for modulators, Dr. Sumazin and his colleagues identified a miRNA 

program-mediated regulatory (mPR) network that includes a sub-network of co-regulating GBM 

drivers. These established drivers of gliomagenesis form a tightly regulated mPR sub-network. 

Moreover, PTEN regulates tumor cell growth rates, and changes to PTEN expression correlate 

with glioblastoma cell growth rates. Silencing of PTEN mPR regulators, many of which have 

never been implicated in cancer and whose locus is deleted in samples where PTEN is intact, 

accelerated tumor cell growth in the same manner as silencing PTEN. These results suggest that 

deletions at various loci can cooperatively regulate distal tumor suppressors and oncogenes 

through post-transcriptional interactions. These findings provide a new direction for identifying 

driver mutations by integrating DNA-sequencing analysis with regulatory networks. 

 

Neuroimaging Predictors of Survival, Pathology, and Molecular Profiles in TCGA 

Glioblastomas  

David Gutman, M.D., Ph.D.; Emory University 

 

Dr. Gutman began by noting that his research group studies features that can be derived from 

radiologic imaging. He stated that GBM is the most common form of primary brain tumor and 

has a 14-month median survival. The Emory University In Silico Center develops human and/or 

machine-based assessments of image features, such as the standardized imaging feature, 

VASARI. A VASARI feature set consists of 30 features (e.g., percent necrosis, proportion 

enhancing tumor) that describe the size, location, and appearance of a magnetic resonance 

imaging (MRI) image set. MRI images provide a global view of a tumor, with the caveat that a 

small tumor adjacent to the motor area has a vastly different outcome than a small tumor located 

in the frontal lobe. To assess tumor imaging properties systematically, data from 72 GBM 

patients were obtained from the Cancer Imaging Archive. The contrast enhancing the tumor was 

an imaging-based predictor of survival; the percent of contrast enhancement was significantly 

associated with shorter survival. Moreover, the mesenchymal GBM subtype was noted to have 

significantly lower rates of non-contrast enhancement compared to other GBM subtypes, 

whereas the proneural subtype was associated with a low degree of contrast enhancement. The 

images revealed that EGFR-mutant GBMs (11/49 patients) were larger than wild-type EGFR 

GBMs, whereas TP53-mutant GBMs (9/49 patients) were smaller than those that were wild-type. 

Dr. Gutman concluded by observing that imaging-based features can provide important 

prognostic information even after accounting for other clinical variables. Current qualitative 

work suggests that genotypes may be associated with imaging phenotypes. Future work includes 

increasing the sample size, moving from an ordinal to a continuous-based assessment of tumor 

compartments (e.g., volumetrics), and including more sophisticated feature extraction to include 

texture/size/location and voxel-based assessments. 
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Closing Remarks  

Elaine Mardis, Ph.D.; Washington University School of Medicine 

 

Dr. Mardis thanked participants for their enthusiasm and interest in TCGA. She noted that the 

original notion of TCGA was established in 2005, and the project has grown exponentially since 

its earliest incarnation, both in terms of the number of tumor types and the multitude of data 

being processed in TCGA pipelines. TCGA production pipeline follows on those established for 

other large-scale genomic projects such as the Human Genome Project, HapMap, and 1000 

Genomes. As of November 2011, thousands of tumor/normal pairs are in TCGA analysis 

pipeline. TCGA tissue specimens are quality-checked for pathology and DNA/RNA, and those 

that pass these QC steps are subjected to a number of analytical platforms. The goal is to achieve 

a 360-degree integration and mining of the petabytes of available data. In 2012, TCGA expects 

to publish results from analyses of colorectal, AML, breast, endometrial, kidney clear cell, lung 

adenocarcinoma, and head and neck cancers. In addition to whole exome sequencing, whole 

genome sequencing is also underway in multiple tumor types, revealing a multitude of genomic 

alterations and illuminating the impact of structural variation on genomics. TCGA enterprise is 

also being expanded to include pilot projects on FFPE-preserved tissues and mouse models of 

human cancers, projects to study rare tumor types, and efforts to integrate TCGA efforts with 

those from ICGC and the NCI’s Clinical Proteomic Tumor Analysis Consortium (CPTAC), 

which will carry out proteomic analyses of colorectal, breast, and ovarian cancer specimens from 

TCGA. TCGA has also established a committee to assess studies in mouse models that will focus 

on prostate cancer, melanoma, non-small cell lung cancer, and three breast cancer models. She 

thanked attendees for attending the symposium, noting that feedback is welcome in preparation 

for next year’s symposium. 

 

The meeting was then adjourned. 

 


